A Bayesian Approach to Approximate Joint Diagonalization of Square Matrices
نویسندگان
چکیده
We present a Bayesian scheme for the approximate diagonalisation of several square matrices which are not necessarily symmetric. A Gibbs sampler is derived to simulate samples of the common eigenvectors and the eigenvalues for these matrices. Several synthetic examples are used to illustrate the performance of the proposed Gibbs sampler and we then provide comparisons to several other joint diagonalization algorithms, which shows that the Gibbs sampler achieves the state-of-theart performance on the examples considered. As a byproduct, the output of the Gibbs sampler could be used to estimate the log marginal likelihood, however we employ the approximation based on the Bayesian information criterion (BIC) which in the synthetic examples considered correctly located the number of common eigenvectors. We then succesfully applied the sampler to the source separation problem as well as the common principal component analysis and the common spatial pattern analysis problems.
منابع مشابه
Least Square Joint Diagonalization of Matrices under an Intrinsic Scale Constraint
We present a new algorithm for approximate joint diagonalization of several symmetric matrices. While it is based on the classical least squares criterion, a novel intrinsic scale constraint leads to a simple and easily parallelizable algorithm, called LSDIC (Least squares Diagonalization under an Intrinsic Constraint). Numerical simulations show that the algorithm behaves well as compared to o...
متن کاملMatrix commutators: their asymptotic metric properties and relation to approximate joint diagonalization
We analyze the properties of the norm of the commutator of two Hermitian matrices, showing that asymptotically it behaves like a metric, and establish its relation to joint approximate diagonalization of matrices, showing that almost-commuting matrices are almost jointly diagonalizable, and vice versa. We show an application of our results in the field of 3D shape analysis.
متن کاملA Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals
In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...
متن کاملA novel joint diagonalization approach for linear stochastic systems and reliability analysis
Purpose – The purpose of this paper is to present a novel gradient-based iterative algorithm for the joint diagonalization of a set of real symmetric matrices. The approximate joint diagonalization of a set of matrices is an important tool for solving stochastic linear equations. As an application, reliability analysis of structures by using the stochastic finite element analysis based on the j...
متن کاملNewton Method for Joint Approximate Diagonalization of Positive Definite Hermitian Matrices
In this paper we present a Newton method to jointly approximately diagonalize a set of positive definite Hermitian matrices. To this end, we derive the local gradient and Hessian of the underlying cost function in closed form. The algorithm is derived for the complex case and can also update a non-square diagonalization matrix. We analyze the cost function at the critical points and show its re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.4666 شماره
صفحات -
تاریخ انتشار 2012